The Cohomology Rings of Abelian Symplectic Quotients
نویسندگان
چکیده
Let M be a symplectic manifold, equipped with a Hamiltonian action of a torus T . We give an explicit formula for the rational cohomology ring of the symplectic quotient M//T in terms of the cohomology ring of M and fixed point data. Under some restrictions, our formulas apply to integral cohomology. In certain cases these methods enable us to show that the cohomology of the reduced space is torsion-free.
منابع مشابه
Orbifold cohomology of abelian symplectic reductions and the case of weighted projective spaces
These notes accompany a lecture about the topology of symplectic (and other) quotients. The aim is two-fold: first to advertise the ease of computation in the symplectic category; and second to give an account of some new computations for weighted projective spaces. We start with a brief exposition of how orbifolds arise in the symplectic category, and discuss the techniques used to understand ...
متن کاملAbelianization for hyperkähler quotients
We study an integration theory in circle equivariant cohomology in order to prove a theorem relating the cohomology ring of a hyperkähler quotient to the cohomology ring of the quotient by a maximal abelian subgroup, analogous to a theorem of Martin for symplectic quotients. We discuss applications of this theorem to quiver varieties, and compute as an example the ordinary and equivariant cohom...
متن کاملThe Cohomology of Weight Varieties
We describe the cohomology ring of the symplectic reductions by tori of coadjoint orbits, or weight varieties. Weight varieties arise from representation theory considerations, and are temed as such because they are the symplectic analogue of the T-isotypic components (weight spaces) of irreducible representations of G. Recently, Tolman and Weitsman expressed the (ordinary) cohomology ring for ...
متن کاملA Note on Higher Cohomology Groups of Kähler Quotients
Consider a holomorphic torus action on a possibly non-compact Kähler manifold. We show that the higher cohomology groups appearing in the geometric quantization of the symplectic quotient are isomorphic to the invariant parts of the corresponding cohomology groups of the original manifold. For non-Abelian group actions on compact Kähler manifolds, this result was proved recently by Teleman and ...
متن کاملOrbifold Cohomology of Hypertoric Varieties
Hypertoric varieties are hyperkähler analogues of toric varieties, and are constructed as abelian hyperkähler quotients T C////T of a quaternionic affine space. Just as symplectic toric orbifolds are determined by labelled polytopes, orbifold hypertoric varieties are intimately related to the combinatorics of hyperplane arrangements. By developing hyperkähler analogues of symplectic techniques ...
متن کامل